Dei to grenseverdiane og funksjonsverdien er like, så funksjonen er kontinuerleg for x=1.
Så må vi sjekke om limx→1f'x eksisterer:
f'x=2x,x>12,x<1
limx→1+f'x=limx→1+2x=2·1=2
limx→1-f'x=limx→1-2=2
Grenseverdien f'1 eksisterer sidan vi fekk to like resultat og funksjonen er kontinuerleg. Funksjonen er deriverbar for x=1.
Ut frå grafen kan det sjå ut som funksjonen er deriverbar for x=1 sidan det er ein jamn overgang utan knekk der. Vi kan likevel ikkje fastslå ut frå grafen at det ikkje er eit knekkpunkt. Auga kan lure oss, for det kan vere ein liten knekk der som vi ikkje ser. Vi må derfor alltid sjekke grenseverdiane for den deriverte.
f) Undersøk om funksjonen f er deriverbar for x=1. Teikn grafen.
fx=x2,x≥12x-2,x<1
Løysing
Vi sjekkar først om funksjonen er kontinuerleg i punktet.
Dei to grenseverdiane er ikkje like, så funksjonen er ikkje kontinuerleg for x=1. Funksjonen er derfor heller ikkje deriverbar for x=1.
Vi observerer at grafen ikkje er kontinuerleg for x=1.
g) Kunne du ha svart på oppgåve f) utan å rekne, men ved å samanlikne med funksjonen i oppgåve e)?
Løysing
Dersom vi samanliknar funksjonen i e) med funksjonen i f), er den einaste skilnaden at det andre funksjonsuttrykket i e) er 2x-1 mens det i f) er 2x-2. Det betyr at grafen som høyrer til funksjonsuttrykket i f) blir forskuva éi eining nedover i forhold til grafen til funksjonsuttrykket i e). Sidan funksjonen i e) var kontinuerleg for x=1, kan derfor ikkje funksjonen i f) vere det. Konklusjonen blir at funksjonen i f) ikkje kan vere deriverbar for x=1.
2.4.92
Funksjonen f er gitt ved
fx=2x+b,x>ax2+2,x≤a
Kva verdiar kan a og b ha for at funksjonen skal vere deriverbar for x=a?
Løysing
Vi bruker dei to krava for deriverbarheit. Kravet om kontinuitet for x=a gir
limx→a-fx=limx→a+fx=fa
Den første likninga gir
limx→a-x2+2=limx→a+2x+ba2+2=2a+b
Vi reknar så ut at fa=a2+2. Dette er det same som den eine grenseverdien og gir derfor ikkje nokon nye løysingar (eller avgrensingar).
Så må vi bruke kravet om at limx→af'x skal eksistere:
f'x=2,x>a2x,x<a
limx→a+f'x=limx→a-f'xlimx→a+2=limx→a-2x2=2aa=1
Vi set dette inn i likninga over og får
a2+2=2a+b12+2=2·1+b3=2+bb=1
Teikn til slutt funksjonen med a=1∧b=1. Ser det ut som funksjonen er deriverbar for a=1?