Lengden av en vektor gitt på koordinatform
Vi har sett at når en vektor prikkes med seg selv, får vi at:
Det betyr at vi har
For en vektor gitt på koordinatform får vi da
Lengden av vektoren
Illustrert med Pytagoras
Vi kan også illustrere formelen for lengden av en vektor ved hjelp av Pytagoras’ læresetning. Vi tegner vektoren
Generelt har vi altså, som over:
Regneeksempel
Med CAS i GeoGebra skriver vi lengde(vektor((6,8))
for å finne lengden av en vektor.
Vi har sett hvordan vi finner vektoren mellom to punkter i planet, og hvordan vi finner lengden av en vektor. Da kan vi finne avstanden mellom to punkter som lengden til vektoren mellom punktene.
Gitt punktene
Vi ser på punktene
Gitt vektorene
La
Definisjon av skalarproduktet gir da
Vinkel mellom vektorer i GeoGebra
Vi kan regne ut vinkelen mellom to vektorer i GeoGebra. Her er det viktig å være klar over at GeoGebra har som default å regne ut vinkler i et annet vinkelmål enn grader, nemlig radianer. Dette vinkelmålet vil du bli bedre kjent med i R2. I linje 4 ser du hvordan du kan gjøre om til grader ved å bruke Vinkel-kommandoen en gang til.