1. Home
  2. 1T - Matematikk fellesfagChevronRight
  3. Tall og algebraChevronRight
  4. UlikheterChevronRight
  5. Ulikheter av 2. gradChevronRight
SubjectMaterialFagstoff

Fagartikkel

Ulikheter av 2. grad

Hvordan løser vi ulikheter av andre grad?

Gitt ulikheten

x2<5x-4

Vi ordner først ulikheten slik at vi får null på høyre side.

x2-5x+4<0

Vi bruker så for eksempel abc-formelen og finner nullpunktene til uttrykket  x2-5x+4.

x2-5x+4  =  0           x=--5±-52-4·1·42·1           x=5±92           x=5±32           x1=4        x2=1

Vi vet nå at utrykket  x2-5x+4  er lik 0 når  x=1  og når  x=4.
Det er bare for disse x-verdiene at uttrykket kan skifte fortegn.

Det betyr at uttrykket enten er positivt eller negativt for alle x-verdier i hvert av de tre intervallene  , 1,1, 4  og  4, . For å avgjøre om uttrykket er positivt eller negativt i hvert av intervallene, kan vi ta «stikkprøver» for en x-verdi i hvert intervall.

Vi vet at uttrykket kan faktoriseres slik at  x2-5x+4=x-4x-1. Det er lettest å bruke det faktoriserte uttrykket når vi tar stikkprøvene.

x2-5x+4=x-4x-1

For  x=0  får vi

0-40-1=-4·-1. Uttrykket er positivt.

For  x=2  får vi

2-42-1=-2·1. Uttrykket er negativt.

For  x=5  får vi

5-45-1=1·4. Uttrykket er positivt.

Det er ikke nødvendig å regne ut verdien i parentesene. Det som betyr noe, er fortegnene på parentesuttrykkene.

For å få en oversikt over situasjonen, setter vi opp et såkalt fortegnsskjema. Det består av en tallinje som viser x-verdiene, og en fortegnslinje som viser fortegnet til uttrykket i de aktuelle intervallene. Heltrukket linje markerer at uttrykket er positivt i dette tallintervallet og stiplet linje markerer at uttrykket er negativt. En «0» viser at uttrykket er lik null for denne x-verdien.

Fortegnskjema for ulikheter av 2. grad

Vår oppgave var å finne ut for hvilke verdier av x det stemte at  x2<5x-4. Det er det samme som å finne ut når  x2-5x+4<0. Ut fra fortegnslinjen er det nå lett å se løsningen på oppgaven.

Løsningen på oppgaven er at x må ligge mellom 1 og 4, dvs.  x1, 4.

Løse ulikheter i GeoGebra. Bilde.

Ved CAS i GeoGebra skriver vi den opprinnelige ulikheten rett inn og bruker knappen x  = eller bruker kommandoen "Løs".

Læringsressurser

Ulikheter

SubjectEmne

Fagstoff

SubjectEmne

Oppgaver og aktiviteter