Analyse og drøfting av kvantitative data
I et kvantitativt forskningsprosjekt starter analysen etter at du har samlet inn datamaterialet. Det er derfor viktig at du har planlagt datainnsamlingen godt på forhånd. Det første du kan gjøre, er å få en oversikt over det materialet du har samlet inn. Deretter kan du se etter sammenhenger og mønstre i datamaterialet. Til slutt kan du drøfte resultatene ved hjelp av tidligere forskning og relevant teori.
Siden de kvantitative dataene består av tall, er analysen basert på statistiske metoder og standardiserte teknikker. Hvilken metode du velger, vil være avhengig av problemstillingen, datamaterialet og utvalget i undersøkelsen. Det finnes også mange dataprogrammer som kan hjelpe deg i analysen.
Forskningsetikk
- De som deltar, skal være anonyme. Det skal derfor ikke være mulig å kunne identifisere enkeltpersoner.
- Observasjoner og svar skal behandles konfidensielt. Du kan ikke lagre observasjoner og svar sammen med reelle navn. Bruk i stedet fiktive navn, pseudonymer eller dekknavn.
- Svarene og observasjonene du samler inn, må gjengis objektivt, nøytralt og presist. Du må ikke utelate viktig informasjon, forfalske svar eller observasjoner eller forsøke å tilpasse materialet en bestemt konklusjon.
Når du har samlet inn datamaterialet, kan du begynne å systematisere og bearbeide dataene i en tabell. Denne tabellen kaller vi en datamatrise, og den inneholder all informasjonen du har samlet inn. Hvis du har samlet inn forskningsdataene dine ved hjelp av et dataprogram, vil dataene dine bli systematisert automatisk, og du trenger ikke lage en egen datamatrise.
Det er oftest lettest å lage datamatrisen i et regneark (Excel) eller et statistikkprogram. Du finner en mer detaljert beskrivelse av hvordan du kan lage en datamatrise i artikkelen "Bearbeiding av datamaterialet", som vi har lenket til nederst på siden.
Analyse av enkeltvariabler
Den enkleste måten å analysere en spørreundersøkelse på er å beskrive hvor mange som har svart hva på hvert enkelt spørsmål. Du beskriver da fordelingen på hver enkelt variabel i undersøkelsen. Ved hjelp av tabeller eller grafiske framstillinger kan du illustrere resultatene og på en enkel og oversiktlig måte vise hva du har kommet fram til.
Skulking siste to uker | Frekvens råtall | Relativ fordeling |
---|---|---|
Ingen ganger | 20 | 80% |
En gang | 2 | 8% |
Flere ganger | 3 | 12% |
I undersøkelsen over har vi spurt 25 elever i en klasse om hvor ofte de har skulket på skolen de siste to ukene, og satt opp resultatet i en frekvenstabell. Resultatene er også regnet om i prosent for å illustrere dem bedre.
Du kan visualisere dataene på forskjellige måter. Under kan du se hvordan du kan illustrere frekvenstabellen i et kakediagram.
Sammenhenger mellom flere variabler
Det kan ofte være interessant å analysere flere forskjellige variabler sammen. På den måten kan du undersøke sammenhenger mellom ulike egenskaper for å finne mønstre og utviklingstrekk. Hvis du for eksempel vil undersøke om det er noen sammenheng mellom de to variablene skulking og kjønn i en klasse, kan du regne om resultatet i prosent og sette det opp i en krysstabell.
Skulking siste to uker | Gutter | Jenter |
---|---|---|
Ingen ganger | 79% | 82% |
Én gang | 7% | 9% |
Flere ganger | 14% | 9% |
Totalt antall (N) = 25 | N = 14 | N = 11 |
Denne tabellen analyserer sammenhengen mellom de to variablene skulking og kjønn, og antall skulk. Du kan sammenligne prosenttallene i hver kolonne for å finne ut om det er noen store forskjeller mellom guttene og jentene i klassen når det gjelder hvor mye og hvor ofte de skulker.
Du kan visualisere dataene dine på flere forskjellige måter. Under kan du se hvordan denne krysstabellen kan illustreres ved hjelp av et stolpediagram.
Programmer for innsamling og analyse av data
Det finnes mange dataprogrammer som kan hjelpe deg å samle inn intervjudata og analysere dataene etterpå. Flere av programmene er gratis og krever bare innlogging.
Generaliseringer og årsakssammenhenger
Formålet med en kvantitativ analyse vil ofte være å generalisere og si noe allmenngyldig om en gruppe mennesker. Hva er for eksempel holdningen til juks og skulking blant elevene på din skole?
For å kunne generalisere må både utvelgelsen av forsøkspersoner og gjennomføringen av undersøkelsen oppfylle bestemte krav. På nettsida spørreundersøkelser.no finner du mer informasjon om disse kravene og en kalkulator for å beregne feilmarginen.
Det er også viktig å huske at selv om du finner en statistisk sammenheng mellom flere variabler, betyr ikke det nødvendigvis at det også finnes en årsakssammenheng. Det kan finnes andre forklaringer. Den statistiske sammenhengen gjelder også bare for grupper og ikke for enkeltpersoner. Det kan finnes unntak, og du kan ikke bruke den statistiske sammenhengen til å si noe om enkeltpersoner i utvalget.
Når du har analysert resultatene av undersøkelsen, kan du tolke dem. Det er viktig at du begrunner tolkningene med de forskningsdataene du har samlet inn. Det vil ofte være mulig å tolke resultatene på forskjellige måter, og du burde derfor drøfte de ulike tolkningene opp mot hverandre for å finne ut hvilken av dem som forteller mest og veier tyngst.
Det er også viktig at du drøfter ulike feilkilder som kan ha påvirket resultatet av undersøkelsen. Du må diskutere både validitet og reliabilitet.
- Validitet handler om at undersøkelsen faktisk beskriver det den skal. Er det samsvar mellom spørsmålene eller observasjonene og problemstillingen? Er spørsmålene i undersøkelsen relevante og presise? Kan noen ha svart uærlig eller misvisende på enkelte spørsmål fordi spørsmålene for eksempel var pinlige eller ubehagelige?
- Reliabilitet handler om at den registreringsmåten du har brukt, er pålitelig. Kan noen for eksempel ha misforstått spørsmålene, eller kan det ha oppstått feil i måten du registrerte svar eller observasjoner på?
Når du analyserer og tolker resultatene dine, kan du også trekke inn relevant teori og forskning. Ulike teorier kan hjelpe deg å oppdage nye sider ved forskningsmaterialet ditt og tolke det fra forskjellige vinkler. Det kan også være interessant å trekke inn tidligere statistikk og forskning på det temaet du undersøker. Da kan du for eksempel peke på likheter og forskjeller mellom de svarene og observasjonene du har samlet inn, og tidligere statistikk og forskning.
Related content
Om hvordan du bruker innsamlet informasjon til å diskutere problemstillingen