Kvadratsetningane. Konjugatsetninga
Generelt har vi at
Korleis blir resultatet dersom parentesuttrykka er like eller nesten like?
Før du les vidare, kan du prøve sjølv å rekne ut uttrykka nedanfor og sjå om du kan finne ein forenkla måte å rekne ut slike uttrykk på.
Den første kvadratsetninga
Når vi multipliserer
Når vi multipliserer ut parentesane, får vi to like ledd,
Geometrisk ser du at arealet av det store kvadratet ovanfor med sidelengder
Dette resultatet er kjent som den første kvadratsetninga.
Den andre kvadratsetninga
Vi multipliserer vidare
Her får vi to like ledd,
Ser du at vi kan illustrere dette geometrisk dersom vi tek utgangspunkt i eit kvadrat med sider
Dette resultatet er kjent som den andre kvadratsetninga.
Konjugatsetninga
Vi multipliserer så
Her får vi ledda
Ser du at vi kan illustrere dette geometrisk òg ved å starte med eit kvadrat med sidekantar
Dersom vi så tenker oss at vi flyttar rektangelet som er merkt med ei stjerne, ser vi at det lyse området òg svarer til
Dette resultatet er kjent som konjugatsetninga, men blir òg kalla den tredje kvadratsetninga (sjølv om ho ikkje beskriv eit kvadrattal).
Oppsummering
Første kvadratsetning:
Andre kvadratsetning:
Konjugatsetninga:
Det er freistande å la vere å pugge kvadratsetningane og heller multiplisere kvart ledd i den eine parentesen med kvart ledd i den andre parentesen. Det vil ikkje vere særleg lurt. Kvadratsetningane er nemleg spesielt nyttige til å faktorisere andregradsuttrykk, og då må du bruke dei motsett veg.
Døme på bruk av kvadratsetningane
Med CAS i GeoGebra: