Modellering med kjent funksjon
Bedrifter som produserer og selger varer ønsker ofte funksjoner som beskriver kostnader, inntekter og overskudd ved produksjon og salg av et visst antall enheter.
Vi bruker gjerne funksjoner med navn , og som modeller for å beskrive henholdsvis kostnader, inntekter og overskudd.
Overskudd ved produksjon og salg av treningsapparater
Ved en bedrift blir det produsert treningsapparater. Funksjonene og gitt ved
kan brukes som modeller for kostnader og inntekter ved produksjon og salg av denne varen. og er henholdsvis inntekter og kostnader gitt i kroner ved produksjon og salg av treningsapparater per uke.
Vi ønsker å finne ut hvor mange enheter som må produseres for å få størst mulig overskudd. Vi ønsker også å vite hva overskuddet da blir.
Overskudd er inntekter minus kostnader:
For å beregne når overskuddet blir størst mulig, finner vi ekstremalpunktet til overskuddsfunksjonen.
Overskuddsfunksjonen er en andregradsfunksjon. Andregradsleddet er negativt. Grafen til har da et toppunkt. Den deriverte vil være lik null i dette toppunktet.
Vi deriverer og får
Vi setter den deriverte funksjonen lik null:
En produksjon på 65 treningsapparater per uke gir størst mulig overskudd:
Det maksimale overskuddet blir på 10 125 kroner per uke.
Vi tegner grafen til overskuddsfunksjonen
Toppunktet på grafen til
Legg også merke til at skjæringspunktene mellom grafene til
Oppgave
Bruk dobbeltderiverttesten til å kontrollere at overskuddsfunksjonen har et toppunkt.
Her skal vi analysere veksten til et morelltre med utgangspunkt i en funksjon som er en matematisk modell for høyden til treet.
Jacob plantet et morelltre i 2006. Treet var 1 meter høyt da han plantet det.
Funksjonen
kan brukes som en modell for å beregne treets høyde de neste 20 årene.
Vi ønsker å finne ut hvilket år treet får sin maksimale vekst, og hvor stor veksten er da.
Vi vil finne dette både grafisk og ved regning.
Grafisk løsning
For oversiktens skyld har vi tegnet grafene til
Grafen til
Grafen til
Vi ser også grafisk at
Alle de tre kurvene kan altså fortelle oss når treet får sin maksimale vekst.
Når den dobbeltderiverte funksjonen er positiv, vokser den deriverte funksjonen, og selve vekstkurven blir brattere og brattere.
Når den dobbeltderiverte funksjonen er negativ, avtar den deriverte funksjonen, og selve vekstkurven flater ut.
Algebraisk løsning
Vi starter med å derivere
Så setter vi
Vi tester
Vi tegner fortegnslinja til den andrederiverte.
Fortegnslinja til
Vi kan også finne hvor stor veksten var etter 10 år:
Det betyr at veksten er 0,9 meter per år etter 10 år.
Oppgave
Løs oppgaven med CAS.
Sammenhengen mellom strekning, fart og akselerasjon kan beskrives ved hjelp av derivasjon.
Når vi beveger oss, for eksempel ved å gå, løpe eller kjøre bil, sier vi at vi forflytter oss en strekning. Vi bruker ofte bokstaven
Farten eller hastigheten er hvor raskt vi forflytter oss, eller hvor fort en tilbakelagt strekning endrer seg. Farten er altså lik den deriverte til strekningen. Vi bruker gjerne bokstaven
Thomas skal kjøre en tur med bilen sin. Strekningen han tilbakelegger i meter,
hvor
Vi vil finne tilbakelagt strekning, fart og akselerasjon etter 10 sekunder:
Akselerasjonen er null etter 10 sekunder. Akselerasjonsfunksjonen er lineær. Da viser
at farten har sin maksimale verdi etter 10 sekunder.
viser at Thomas nådde den maksimale farten på 11 m/s etter en strekning på 100 m.