Likninger - Matematikk 1T-Y - DT - NDLA

Hopp til innhold
Oppgave

Likninger

Oppgavene nedenfor kan løses uten bruk av hjelpemidler. Du kan også prøve å løse likningene med CAS i GeoGebra. Nederst på siden kan du laste ned oppgavene som Word- og pdf-dokumenter.

Oppgave 1

Sett inn riktig tall i hver av rutene.

a) ?+4=6

b) ?-4=8

c) 4+?-2=1

d) 3-7+?=10

e) 3-?=12

Løsning

a) 2+4=6

b) 12-4=8

c) 4+-1-2=1

d) 3-7+14=10

e) 3--9=12

Oppgave 2

Sett inn riktig tall i hver av rutene.

a) 2· ?+2=8

b) 3· ?-3=6

c) 7· ?-3=-10

d) 6+3· ?=0

e) -3· ?-3=0

Løsning

a) 2·3+2=8

b) 3·3-3=6

c) 7·-1-3=-10

d) 6+3·-2=0

e) -3·-1-3=0

Oppgave 3

Løs likningene.

Sjekk om du har regnet riktig ved å se om venstre side er lik høyre side når du setter løsningen din inn i den opprinnelige likningen.

a) 3x-1=5

Løsning

3x-1=53x-1+1 = 5+13x=63x3=63x=2

Kontroll av løsningen:

3·2-1 = 56-1 = 55 = 5

b) 5x+2=3x-2

Løsning

5x+2=3x-25x-3x = -2-22x=-4x=-42x=-2

Kontroll av løsningen:

5·-2+2 = 3·-2-2-10+2 = -6-2-8 = -8

c) 5x+5=-x+11

Løsning

5x+5=-x+115x+x = 11-56x=6x=66x=1

Kontroll av løsningen:

5·1+5 = -1+115+5 = 1010 = 10

d) -3x-4=x-4

Løsning

-3x-4=x-4-3x-x = -4+4-4x=0x=0-4x=0

Kontroll av løsningen:

-3·0-4 = 0-4-4 = -4

e) x-2=4+x

Løsning

x-2=4+xx-x = 4+20x=6 

Ingen løsning

f) 2x-2=4x+8

Løsning

2x-2=4x+82x-4 = 4x+82x-4x=8+4-2x=12x=12-2x=-6

Kontroll av løsningen:

2-6-2 = 4·-6+82·-8 = -24+8-16 = -16

g) Skriv med ord algoritmen for å løse likningen over.

Løsningsforslag
  • Multipliser ut parentesen.

  • Legg til 4 på begge sider av likhetstegnet.

  • Trekk fra 4x på begge sider av likhetstegnet.
  • Trekk sammen leddene på venstre side og på høyre side.
  • Divider på -2 på begge sider av likhetstegnet.
  • Regn ut høyre side.

Oppgave 4

Løs likningene.

a) 2,5x-3=x+1,5

Løsning

2,5x-3=x+1,52,5x-x = 1,5+31,5x=4,5x=4,51,5x=3,0

b) 0,32x-1,42=-1,18x+1,58

Løsning

0,32x-1,42=-1,18x+1,580,32x+1,18x = 1,58+1,421,50x=3,00x=3,001,50x=2,00

c) 0,5x-3=0,1x+0,1

Løsning

0,5x-3=0,1x+0,10,5x-1,5 = 0,1x+0,10,5x-0,1x=0,1+1,50,4x=1,6x=1,60,4x=4,0

d) -2(3-t)=-t+2

Løsning

-23-t=-t+2-6+2t = -t+22t+t=2+63t=8t=83

e) -s-2-2s+1=1-s

Løsning

-s-2-2s+1=1-s-s+2-2s-2 = 1-s-s-2s+s=1-2s=1s=1-2s=-12

f) Skriv med ord algoritmen for å løse likningen over.

Løsningsforslag
  • Løs opp parentesene.

  • (-2 og 2 på venstre side av likhetstegnet blir borte.)

  • Legg til s på begge sider av likhetstegnet.
  • Trekk sammen leddene på venstre side og på høyre side.
  • Divider med -2 på begge sider.
  • Flytt minustegnet foran brøken.

Oppgave 5

Løs likningene.

a) 12x-2=13x-16

Løsning

12x-2=13x-166·12x-6·2 = 6·13x-6·163x-12=2x-1x=11

b) x2-2=x3-16

Løsning

x2-2=x3-166·x2-6·2 = 6·x3-6·163x-12=2x-1x=11

c) 12(2x-3)=-x+32

Løsning

122x-3=-x+32x-32 = -x-322·x-2·32=2·-x-2·322x-3=-2x-34x=0x=04x=0

d) x-22=2-x3

Løsning

x-22=2-x36·x-22 = 6·2-x33·x-2=2·2-x3x-6=4-2x5x=10x=2

e) x-12-3=3-2x3+x12

Løsning

x-12-3=3-2x3+x1212·x-12-12·3 = 12·3-2x3+12·x126·x-1-36=4·3-2x+x6x-6-36=12-8x+x13x=54x=5413

f) Skriv med ord algoritmen for å løse likningen over.

Løsningsforslag
  • Finn fellesnevneren, som er 12.
  • Multipliser alle ledd med 12.
  • Forkort bort nevnerne.
  • Multipliser ut parentesene.
  • Legg til 6 og 36 på begge sider av likhetstegnet.
  • Legg til 8x og trekk fra x på begge sider av likhetstegnet.
  • Trekk sammen leddene på hver side av likhetstegnet.
  • Divider med 13 på begge sider av likhetstegnet.

Merk at i løsningsforslaget til oppgave e) viser vi ikke alle trinnene i algoritmen. Finn ut hvilke trinn det er som ikke blir vist.

g) Finnes det en generell algoritme for å løse likningene på denne siden, altså likninger av første grad? Skriv den ned.

Oppgave 6

Løs likningene.

a) 3x2-43=34-x62

Løsning

3x2-43=34-x623x2-123 = 64-2x69x-24=9-2x11x=33x=3

b) 3s4-110=s-152

Løsning

3s4-110=s-1523s4-310 = 2s-2515s-6=40s-8-25s=-2s=225

c) 32t-1-214-t=0

Løsning

32t-1-214-t=032t-32-12+2t = 02·32t-2·32-2·12+2·2t=2·03t-3-1+4t=07t=4t=47

d) 13y-3y+3=16-19y+19

Løsning

13y-3y+3 = 16-19y+1918·13y-18·3y+18·3=18·16-18·19y+18·196y-54y+54=3-2y+2-46y=-49y=-49-46y=4946

Oppgave 7

Stian, Erik og Øyvind delte en pizza. Stian spiste en tredel, Erik spiste to femtedeler, og Øyvind spiste resten.

Sett opp en likning og finn ut hvor stor del av pizzaen Øyvind spiste.

Løsning

Vi setter Øyvinds del lik x, og vi kan sette opp og løse likningen:

13+25+x = 1155·13+153·25+15·x=15·15+6+15x=1515x=15-1115x15=415x=415

Vi kan også løse likningen med CAS i GeoGebra:

Øyvind spiste 415 av pizzaen.

Oppgave 8

Kristin, Anette og Ellen har til sammen 1 100 kroner. Ellen har dobbelt så mange penger som Anette, og Kristin har 100 kroner mindre enn Ellen.

Sett opp en likning og finn ut hvor mange penger hver av de tre jentene har.

Løsning

Vi setter Anettes beløp lik x. Ellens blir da 2x, og Kristins beløp blir 2x-100. Da kan vi sette opp og løse denne likningen:

x+2x+(2x-100) = 11003x+2x-100=11005x=1100+1005x5=12005x=240

Anette har 240 kroner, Ellen har 2·240 kroner=480 kroner, og Kristin har 480 kroner-100 kroner=380 kroner.

Vi kan også løse likningen med CAS i GeoGebra, der vi i tillegg regner ut hvor mye de to andre har.

Oppgave 9

På en aktivitetsdag ved skolen valgte 60 % av elevene fotball. En tredel valgte volleyball. De siste 12 elevene hadde fått fritak.

Sett opp en likning og finn ut hvor mange elever det er ved skolen.

Løsning

La x være antall elever ved skolen. 60 % av elevene blir 60100x=35x. En tredel av elevene blir 13x. Da kan vi sette opp og løse denne likningen:

35x+13x+12 = x153·35x+155·13x+15·12=15·x9x+5x+180=15x180=15x-14x180=x

Vi kan også løse likningen med CAS i GeoGebra:

Det er 180 elever ved skolen.

Oppgave 10

Per, Pål og Espen er til sammen 66 år. Per er dobbelt så gammel som Espen, og Pål er 6 år eldre enn Espen.

Sett opp en likning og finn ut hvor gamle de tre guttene er.

Løsning

Vi setter Espens alder lik x. Påls alder blir da x+6 og Pers alder blir 2x. Da kan vi sette opp og løse denne likningen:

x+(x+6)+2x = 664x=60x=15

Vi kan også løse oppgaven med CAS i GeoGebra, der vi både løser likningen og regner ut alderen til de to andre.

Espen er 15 år, Pål er 21 år, og Per er 30 år.

Oppgave 11

Ari, Anette og far er til sammen 54 år. Anette er dobbelt så gammel som Ari, og far er tre ganger så gammel som Anette.

Sett opp en likning og finn ut hvor gamle Ari, Anette og far er.

Løsning

La x være alderen til Ari. Da er Anettes alder 2x og fars alder 6x. Da kan vi sette opp og løse denne likningen:

x+2x+6x = 549x=54x=6

Vi kan også løse oppgaven med CAS i GeoGebra:

Ari er 6 år, Anette 12 år, og far er 36 år.

Oppgave 12

Far er tre ganger så gammel som Per, og bestefar er dobbelt så gammel som far. Til sammen er de 120 år.

Sett opp en likning og finn ut hvor gamle Per, far og bestefar er.

Løsning

La x være alderen til Per. Da er fars alder 3x og bestefars alder 6x. Da kan vi sette opp og løse denne likningen:

x+3x+6x = 12010x=120x=12

Vi kan også løse oppgaven med CAS i GeoGebra:

Per er 12 år, far er 36 år, og bestefar er 72 år.

Oppgave 13

Mormor var 22 år da mor ble født. I dag er hun dobbelt så gammel som mor. Sett opp en likning og finn ut hvor gamle mor og mormor er.

Løsning

La x være alderen til mor. Da er mormors alder 2x. Da kan vi sette opp og løse denne likningen:

x+22 = 2x-x=-22x=22

Vi kan også løse oppgaven med CAS i GeoGebra.

Mor er 22 år, og mormor 44 år. Det hadde vi kanskje ikke trengt likning for å finne ut!

Oppgave 14

Far er tre ganger så gammel som Camilla. Far er seks år eldre enn onkel Kåre. Til sammen er de tre 92 år.

Sett opp en likning og finn ut hvor gamle Camilla, far og onkel Kåre er.

Løsning

La x være alderen til Camilla. Da er fars alder 3x og onkel Kåres 3x-6. Da kan vi sette opp og løse denne likningen:

x+3x+(3x-6) = 924x+3x-6=927x=92+67x7=987x=14

Vi kan også løse oppgaven med CAS i GeoGebra:

Camilla er 14 år, far er 42 år, og onkel Kåre er 36 år.

Oppgave 15

Mor er 21 år eldre enn Maja. Bestefar er tre ganger så gammel som mor. Om to år er de til sammen 100 år.

Sett opp en likning og finn ut hvor gamle Maja, mor og bestefar er.

Løsning

La x være alderen til Maja. Da er mors alder x+21 og bestefars alder 3(x+21). I dag er de til sammen 100 år-3·2 år=94 år. Da kan vi sette opp og løse denne likningen:

x+(x+21)+3(x+21) = 94x+x+21+3x+63=945x=94-845x5=105x=2

Løst med CAS i GeoGebra kan det se slik ut:

Maja er 2 år, mor er 23 år, og bestefar er 69 år.

Oppgave 16

Løs likningene.

a) x2+8=12

Løsning

x2+8=12x2 = 12-8x2=4x=±4x=±2

b) 4x2+6=70

Løsning

4x2+6=704x2 = 70-64x2=644x24=644x2=16x=±16x=±4

c) -x2+2=2x2-25

Løsning

-x2+2  = 2x2-253x2=27x2=9x=±3

Nedlastbare filer

Her kan du laste ned oppgavene som Word- og pdf-dokumenter.

Filer

Skrevet av Stein Aanensen, Olav Kristensen og Bjarne Skurdal.
Sist faglig oppdatert 21.08.2024