Mer om stigningstallet - Matematikk 1T - NDLA

Hopp til innhold
Fagartikkel

Mer om stigningstallet

Stigningstallet til en lineær funksjon kan finnes på flere måter.

Tidligere fant vi stigningstallet til den gitte grafen ved å starte i et punkt på grafen og så gå én enhet til høyre.

Ved å starte i for eksempel punktet 1, 1 og gå to enheter til høyre, må vi gå fire enheter oppover parallelt med y-aksen for igjen å treffe grafen. Stigningstallet blir

a=42=2

Dette kan vi også regne oss fram til med utgangspunkt i de to punktene på grafen

a=5-13-1=42=2

I telleren har vi endring i y-verdi og i nevneren endring i x-verdi.

Endring i y-verdi dividert med endring i x-verdi gir alltid verdien for stigningstallet fordi stigningstallet er endring i y-retning per enhet på x-aksen

Vi lar nå x1, y1 og x2, y2 være to vilkårlige punkter på linjen. Legg merke til hvordan vi bruker indekser, 1 og 2, for å «navngi» punkt 1 og punkt 2.

Det er vanlig å la den greske bokstaven delta, Δ, stå for endring.

Vi lar Δx=x2-x1 være endring i x-verdi og Δy=y2-y1 være endring i y-verdi.

Stigningstallet til linjen blir

a=y2-y1x2-x1=ΔyΔx

Skrevet av Olav Kristensen og Stein Aanensen.
Sist faglig oppdatert 30.08.2018