Arealformelen for trekanter - Matematikk 1P-Y - BA - NDLA

Hopp til innhold
Fagartikkel

Arealformelen for trekanter

Vi kan lage en generell formel for arealet av en trekant når vi kjenner to sider og vinkelen mellom dem.

Eksempel

Vi skal finne arealet av et trekantet lekeområde ABC hvor AB er 60 m, AC er 50 m og vinkel A er 57 grader.

Løsning

(Her regner vi uten GeoGebra fordi vi ønsker å se hele utregningen for å komme fram til arealformelen!)

Vi kjenner arealformelen for en trekant  T=g·h2.

Høyden h deler trekanten i to rettvinkla trekanter. I den venstre rettvinkla trekanten blir høyden h motstående katet til vinkel A. Hypotenusen blir siden AC. Da kan vi sette opp

  sinA = Motstående katetHypotenus=hACsin57°=h50        h=50·sin57°

Når vi setter dette inn i arealformelen for trekanten, får vi

T=g·h2=60·50·sin57°2=12·60·50·sin57°1300

Arealet av lekeområdet er 1300 m2.

Arealformelen

Denne fremgangsmåten kan brukes i alle liknende situasjoner. Vi kan da lage en generell formel for arealet av en trekant når vi kjenner to sider og vinkelen mellom dem.

Med samme framgangsmåte som over, får vi

sinA = hb        h=b·sinA

Vi får da at

       T = c·h2=c·b·sinA2=12·c·b·sinA

Arealformelen for trekanter

La A være vinkelen mellom to sider c og b i en trekant.

Arealet av trekanten er gitt ved formelen

T=12·c·b·sinA

Skrevet av Olav Kristensen og Stein Aanensen.
Sist faglig oppdatert 27.01.2020