Hopp til innhold

  1. Home
  2. 1T - Matematikk fellesfagChevronRight
  3. Hvordan vi tegner grafen til en rasjonal funksjonChevronRight
SubjectMaterialFagstoff

Fagartikkel

Hvordan vi tegner grafen til en rasjonal funksjon

Dersom vi skal tegne grafen til en rasjonal funksjon uten digitale verktøy, er det lurt å finne asymptotene først.

For å finne eventuelle vertikale asymptoter setter vi først nevneren i funksjonsuttrykket lik null.

I eksemplet i artikkelen Rasjonale funksjoner så vi på funksjonen gitt ved

fx=x-2x+2

Når vi setter nevneren lik null, får vi likningen  x+2=0, som gir  x=-2.

Vi undersøker så om telleren er forskjellig fra null for denne verdien av x:

x-2=-2-2=-40

Det viser seg at en brøks verdi alltid vil gå mot enten pluss eller minus uendelig når x nærmer seg et tall som gir null i nevner og et tall forskjellig fra null i teller.

Det betyr at  x=-2  er en vertikal asymptote til funksjonen f.

Vi finner en eventuell horisontal asymptote ved å la x gå mot et uendelig stort positivt eller et uendelig lite negativt tall.

Når x er et veldig stort tall eller et veldig lite tall, vil konstantene -2 og 2 i brøken bety minimalt.

Da er

fx=x-2x+2xx=1

Grafen vil altså nærme seg linja  y=1  når x går mot et uendelig stort positivt eller et uendelig lite negativt tall.

Linja  y=1  er en horisontal asymptote til funksjonen.

Når du skal tegne grafen til en rasjonal funksjon uten digitale hjelpemidler, er det mye lettere hvis du først finner eventuelle asymptoter og tegner opp disse.

* * * * * *

Den rasjonale funksjonen i eksempelet ovenfor har førstegradspolynomer i teller og nevner. Rasjonale funksjoner kan også ha andre typer polynomer i teller og nevner, for eksempel andregradspolynomer.

Merk at også funksjonen  hx=1x  er et eksempel på en rasjonal funksjon.