Hopp til innhald

  1. Home
  2. Matematikk for samfunnsfagChevronRight
  3. AlgebraChevronRight
  4. AndregradslikningarChevronRight
  5. Forenkling av rasjonale uttrykk ChevronRight
TasksAndActivitiesOppgaver og aktiviteter

Oppgave

Forenkling av rasjonale uttrykk

1.4.19

Forkort brøkane. Sjekk løysinga med CAS i GeoGebra.

a) x2-3x+2x-1

vis fasit

Først faktoriserer vi teljaren ved hjelp av nullpunktmetoden.

Teljaren x2-3x+2 har nullpunkta x1=1 og x2=2.

Då er x2-3x+2=x-1x-2.

x2-3x+2x-1=x-1x-2x-1=x-2

x i andre minus 3x pluss 2 over x minus 1. CASutklipp.

b) -x2+x+6-2x-4

vis fasit

Først faktoriserer vi teljaren ved hjelp av nullpunktmetoden.

Teljaren -x2+x+6 har nullpunkta x1=3 og x2=-2.

Då er -x2+x+6=-x-3x+2.

-x2+x+6-2x-4=-x-3x+2-2x+2=x-32

- x i andre+x+6 over minus 2 x minus 4. CASutklipp.

c) 8x2-16x+88x-8

vis fasit

Først faktoriserer vi teljaren ved hjelp av andre kvadratsetning.

Teljaren 8x2-16x+8 har nullpunkt x1=x2=1.

Då er 8x2-16x+8=8x-1x-1.

8x2-16x+88x-8=8x-1x-18x-1=x-1

Faktoriser 8 x i andre - 16 x + 8 over 8 x - 8. CASutklipp.

d) -2x2-+3-x2+2x-1

vis fasit

Først faktoriserer vi teljaren ved hjelp av nullpunktmetoden.

Teljaren -2x2-x+3 har nullpunkta x1=-32 og x2=1.

Då er -2x2-x+3=-2x+32x-1.

Deretter faktoriserer vi nemnaren ved hjelp av andre kvadratsetning.

Nemnaren -x2+2x-1 har nullpunkt x=1.

Dermed er -x2+2x-1=-x-1x-1.

-2x2-x+3-x2+2x-1=-2x+32x-1-x-1x-1=2x+32x-1=2x+3x-1

Faktoriser -2 x i andre minus x pluss 3 over -x i andre pluss 2 x minus 1. CASutklipp.

e) -3x2+5x+2x2-4

vis fasit

Først faktoriserer vi teljaren ved hjelp av nullpunktmetoden.

Teljaren -3x2+5x+2 har nullpunkta x1=-13 og x2=2

Då er -3x+5x+2=-3x+13x-2.

-3x2+5x+2x2-4=-3x+13x-2x-2x+2=-3x+13x-2x-2x+2=-3x+13x+2=-3x+1x+2

Faktoriser -3 x i andre pluss 5x pluss 2 over x i andre 2minus 4. CASutklipp.

1.4.20

Finn samnemnar og trekk saman

a) xx-1-x-32x-2

vis fasit

Samnemnar er 2(x-1).

Vi får

2·x2(x-1)-x-32x-1=2x-x+32x-1                                   = x+32x-2

b) 2x-1+xx2-3x+2

vis fasit

Først faktoriserer vi nemnarane. Nemnaren x2-3x+2 har nullpunkta x1=1 og x2=2.

Dermed er x2-3x+2=x-1x-2.

Samnemnar blir då x-1x-2.

Vi får

x-2·2x-2x-1+xx-2x-1=2x-4+xx-1x-2                                                    = 3x-4x-1x-2

c) xx-1+2-xx+3-x-2x2+2x-3

vis fasit

Først faktoriserer vi nemnarane. Nemnaren x2+2x-3 har nullpunkta x1=-3 og x2=1.

Dermed er x2+2x-3=x+3x-1.

Samnemnar blir då x+3x-1.

Vi får

x+3·xx+3x-1+x-12-xx-1x+3-x-2x+3x-1=x2+3x+2x-x2-2+x-x+2x+3x-1= x2+3x+2x-x2-2+x-x+2x+3x-1=5xx+3x-1

d) 12x-2-2x-1x-2+3x2-3x+2

vis fasit

Først faktoriserer vi nemnarane. Nemnaren x2-3x+2 har nullpunkta x1=1 og x2=2.

Dermed er x2-3x+2=x-1x-2.

Samnemnar blir då 2x-1x-2.

Vi får

x-2·1x-2·2x-1-2x-12x-12x-1x-2+2·32x-1x-2=x-2-22x2-x-2x+1+62x-1x-2=x-2-4x2+2x+4x-2+62x-1x-2= -4x2+7x+22x-1x-2=-4x+14x-22x-1x-2=4x+12x-1

1.4.21

a) Bestem a slik at brøken kan forkortast

x-ax2-6x+8

vis fasit

Først faktoriserer vi nemnaren.

Nemnaren x2-6x+8 har nullpunkta x1=2 og x2=4.

Dermed er x2-6x+8=x-2x-4.

Skal brøken kunne forkortast, må a anten vere 2 eller 4.

Læringsressursar

Andregradslikningar