Hopp til innhald

  1. Home
  2. Matematikk for yrkesfaglige programmerChevronRight
  3. Tal og algebraChevronRight
  4. TalrekningChevronRight
  5. Addisjon og subtraksjon av brøkarChevronRight
SubjectMaterialFagstoff

Fagartikkel

Addisjon og subtraksjon av brøkar

Slik adderer og subtraherer vi brøkar.

Å trekkje saman brøkar med same nemnar

Når vi til dømes legg saman 3 meter, 2 meter og 4 meter, verdiar med same nemning, treng vi ikkje å gjere noko spesielt før vi legg saman. Vi får enkelt og greitt 9 meter som svar.

3 m+2 m+4 m=9 m

På same måte kan vi trekkje saman 4 tredelar, 1 tredel og 2 tredelar direkte til 7 tredelar.

43+13+23=73

Magiker sager en dame i to. Foto.

Å trekkje saman brøkar med ulik nemnar

Utviding av brøkar

Men dersom vi skal leggje saman 3 cm+2 m+4 dm, må vi først finne ei felles nemning (eller nemnar). Deretter kan vi leggje saman.

Vi må tenkje på same måte når vi legg saman 3 halve + 2 tredelar + 1 femdel. Vi må først finne ein felles nemnar (eller nemning).

Kva må vi gjere for å rekne ut 32+23+15?

Vi vel å la samnemnar for 2, 3 og 5 vere det minste talet som desse tala går opp i, altså
2·3·5=30.

Kvar av brøkane skal altså skrivast med nemnar 30, men framleis ha same verdi.

Ein brøk endrar ikkje verdi når vi multipliserer med same tal i teljar og nemnar.

Oppdelt sirkel

Det kan vi illustrere ved å sjå på arealet av ein sirkel.

Vi ser av figuren at halvparten av arealet til sirkelen er lik summen av 2 firedelar , 12=14+14. Men sidan 14+14=24, får vi at 12=24.

Men det er nettopp det vi får når vi multipliserer brøken 12 med 2 i teljar og nemnar.

12=1·22·2=24

Vi kallar denne handlinga «å utvide ein brøk».

I dagligtale er å utvide det same som å gjere større, men i brøkrekning har ordet utvide altså ei anna tyding! Eigentleg burde vi heller ha funne eit utrykk tilsvarande det engelske. På engelsk bruker ein «rename». Brøken får eit anna namn, men han er like mye verd.

Vi utvidar brøkane

32 = 3·152·15=453023=2·103·10=203015=1·65·6=630

Til slutt legg vi saman og får

32+23+15=4530+2030+630=45+20+630=7130

Ein brøk der teljar er større ein nemnar, kallar vi ein uekte brøk. Ein uekte brøk kan gjerast om til eit blanda tal.

Vi får at

7130=6030+1130=2+1130=21130 som betyr 2+1130

Det er viktig at du ikkje mekaniserer brøkrekninga di. Kanskje du tidlegare har gjort om det blanda talet 21130 til uekte brøk utan å vere medviten om at eit blanda tal er eit heilt tal pluss ein brøk.

Forkorting av brøkar

Vi har at 630=6:630:6=15.

Vi kan også dividere med same tal i teljar og nemnar utan at brøken endrar verdi. Vi kallar denne handlinga «å forkorte ein brøk».

I daglegtale er å forkorte det same som å gjere kortare eller mindre. Men i brøkrekning har ordet forkorte ei anna tyding. Her kunne vi òg med fordel ha funne eit uttrykk tilsvarande det engelske «simplify». Vi forenklar brøken, han er like mye verd.

Oppsummering

Å utvide ein brøk vil seie å multiplisere med same tal (ikkje 0) i teljar og nemnar.


Å forkorte ein brøk vil seie å dividere med same tal (ikkje 0) i teljar og nemnar.

(For å forkorte faktoriserer vi gjerne først teljar og nemnar. Så «stryk» vi faktor mot faktor.)

Vi adderer og subtraherer brøkar (trekkjer saman brøkar) ved å

1. utvide brøkane slik at alle får same nemnar
2. addere/subtrahere teljarane og behalde nemnaren
Det kan vere lurt å
- dividere heile tal med 1 slik at heile kan oppfattast som brøkar
- gjere blanda tal om til uekte brøkar

Til slutt må vi forkorte svaret.

Døme

12+3-23+59 = 12+31-23+59=1·92·9+3·181·18-2·63·6+5·29·2=918+5418-1218+1018=9+54-12+1018=6118

Læringsressursar

Talrekning

Kva er kjernestoff og tilleggsstoff?
SubjectEmne

Læringssti

SubjectEmne

Fagstoff

SubjectEmne

Oppgaver og aktiviteter