Hopp til innhold

  1. Home
  2. Matematikk for realfagChevronRight
  3. AlgebraChevronRight
  4. UlikheterChevronRight
  5. Ulikheter av andre gradChevronRight
SubjectMaterialFagstoff

Fagartikkel

Ulikheter av andre grad

Hvordan løser vi ulikheter av andre grad?

Gitt ulikheten

x2<5x-4

Vi ordner først ulikheten slik at vi får null på høyre side.

x2-5x+4<0

Vi bruker så for eksempel abc-formelen og finner nullpunktene til uttrykket  x2-5x+4.

x2-5x+4  =  0           x=--5±-52-4·1·42·1           x=5±92           x=5±32           x1=4        x2=1

Vi vet nå at uttrykket  x2-5x+4  er lik 0 når  x=1  og når  x=4.
Det er bare for disse x-verdiene at uttrykket kan skifte fortegn.

Det betyr at uttrykket enten er positivt eller negativt for alle x-verdier i hvert av de tre intervallene  , 1,1, 4  og  4, . For å avgjøre om uttrykket er positivt eller negativt i hvert av intervallene, kan vi ta "stikkprøver" for en x-verdi i hvert intervall.

Vi vet at uttrykket kan faktoriseres slik at  x2-5x+4=x-4x-1. Det er lettest å bruke det faktoriserte uttrykket når vi tar stikkprøvene.

x2-5x+4=x-4x-1

For  x=0  får vi

0-40-1=-4·-1. Uttrykket er positivt.

For  x=2  får vi

2-42-1=-2·1. Uttrykket er negativt.

For  x=5  får vi

5-45-1=1·4. Uttrykket er positivt.

Det er ikke nødvendig å regne ut verdien i parentesene. Det som betyr noe, er fortegnene på parentesuttrykkene.

Utfordring!

Ser du at det egentlig er tilstrekkelig å regne ut kun én verdi? Kan du si hvorfor det er riktig?



For å få en oversikt over situasjonen, kan vi sette opp et såkalt fortegnsskjema. Det består av en tallinje som viser x-verdiene, og en fortegnslinje som viser fortegnet til uttrykket i de aktuelle intervallene. Heltrukket linje markerer at uttrykket er positivt i dette tallintervallet, og stiplet linje markerer at uttrykket er negativt. En "0" viser at uttrykket er lik null for denne x-verdien.

Fortegnslinje for x i andre minus 5 x pluss 4. Linjen er heltrukket fra x er lik minus uendelig til x er lik 1, null for x er lik 1, stiplet fra x er lik 1 til x er lik 4, null for x er lik 4 og heltrukket fra x er lik 4 til x er lik uendelig. Illustrasjon.

Vår oppgave var å finne ut for hvilke verdier av x det stemte at  x2<5x-4. Det er det samme som å finne ut når  x2-5x+4<0. Ut fra fortegnslinjen er det nå lett å se løsningen på oppgaven.

Løsningen på oppgaven er at x må ligge mellom 1 og 4. Dette kan vi skrive som et intervall slik:

x1, 4

Skrivemåten betyr "x er med i intervallet ⟨1, 4⟩", altså intervallet fra 1 til 4. Alternativt kan vi skrive svaret som en dobbel ulikhet:

1<x<4

Den doble ulikheten sier at x skal være større enn 1 og samtidig mindre enn 4.

Ved CAS i GeoGebra skriver vi den opprinnelige ulikheten rett inn og bruker knappen x  = . Da vil det se ut som vist nedenfor.

x2<5x-41Løs:  {1<x<4}

Vi ser at GeoGebra skriver svaret som en dobbel ulikhet.

Vi kan også skrive ulikheten inn i kommandoen "Løs()".

Læringsressurser

Ulikheter

SubjectEmne

Fagstoff

SubjectEmne

Oppgaver og aktiviteter