Fagstoff

Kvadratsetningene

Publisert: 08.06.2010, Oppdatert: 03.03.2017
  • Innbygg
  • Enkel visning
  • Lytt til tekst
  • Skriv ut

Tidligere så vi hvordan vi multipliserer to parentesuttrykk med hverandre.

Generelt har vi at  

a+b·c+d=ac+ad+bc+bdKvadratsetningene

Hvordan blir resultatet dersom parentesuttrykkene er like eller nesten like?

Når vi multipliserer a+b med seg selv, får vi kvadratet a+b2

 

 

 

Multipliser og trekk sammen

(a+b)·(a+b)=

(a-b)·(a-b)=

(a+b)·(a-b)=

 

a+b2=a+b·a+b         =a·a+a·b+b·a+b·b         =a2+ab+ab+b2         =a2+2ab+b2

Når vi multipliserer ut parentesene, får vi to like ledd, ab+ab, som vi slår sammen til 2ab.

Geometrisk ser du at arealet av det store kvadratet ovenfor med sidelengder a+b er lik summen av arealene av de to like store lyse rektanglene og de to mørke kvadratene.

Kvadratsetningene  

Dette resultatet er kjent som den første kvadratsetningen.

Første kvadratsetning

a+b2=a2+2ab+b2

Kvadratsetningene Vi multipliserer videre a-b med seg selv og får kvadratet a-b2

a-b2=a-b·a-b         =a·a-a·b-b·a+b·b         =a2-ab-ab+b2         =a2-2ab+b2

Her får vi to like ledd,-ab-ab , som vi slår sammen til -2ab.

 

Kvadratsetningene  

Ser du at vi kan illustrere dette geometrisk hvis vi tar utgangspunkt i et kvadrat med sider a?

Dette resultatet er kjent som den andre kvadratsetningen.

Andre kvadratsetning

a-b2=a2-2ab+b2

Vi multipliserer så a+b med a-b.

a+b·a-b=a·a-a·b+b·a-b·ba+b·a-b=a2-ab+ab-b2a+b·a-b=a2-b2

Her får vi leddene ab og -ab, som til sammen blir lik null og faller bort.

Ser du at vi kan illustrere dette også geometrisk ved å starte med et kvadrat med sidekanter a?

a2-b2 tilsvarer det lyse området i den første figuren nedenfor.

Kvadratsetningene  

Hvis vi så tenker oss at vi flytter rektangelet som er merket med en stjerne, ser vi at det lyse området også tilsvarer a+ba-b.

Kvadratsetningene  

Dette resultatet er kjent som konjugatsetningen eller også som den tredje kvadratsetningen.

Konjugatsetningen (Tredje kvadratsetning)

a+b·a-b=a2-b2

Lær deg kvadratsetningene!

Nå er det lett å falle for fristelsen til å la være å pugge kvadratsetningene og heller multiplisere hvert ledd i den ene parentesen med hvert ledd i den andre parentesen. Det vil ikke være særlig lurt.

Kvadratsetningene er nemlig spesielt nyttige til å faktorisere andregradsuttrykk, og da må du bruke dem «motsatt vei».

Eksempel på bruk av kvadratsetningene

 4x+22+2x-32-3x-2x+2=4x2+2·x·2+22+2x2-2·2x·3+32-3x2-22=4x2+4x+4+4x2-12x+9-3x2-4=4x2+16x+16+4x2-12x+9-3x2-12=4x2+16x+16+4x2-12x+9-3x2+12=5x2+4x+37

Ved CAS i GeoGebra
Regne med kvadratsetningene i Geogebra. Bilde.  

Oppgaver

Aktuelt stoff

Generelt

Relatert innhold